A Circulant Preconditioner for the Systems of LMF-Based ODE Codes

نویسنده

  • Daniele Bertaccini
چکیده

In this paper, a recently introduced block circulant preconditioner for the linear systems of the codes for ordinary differential equations (ODEs) is investigated. Most ODE codes based on implicit formulas, at each integration step, need the solution of one or more unsymmetric linear systems that are often large and sparse. Here, the boundary value methods, a class of implicit methods for the numerical integration of ODEs based on linear multistep formulas, are considered more in detail for initial value problems. Theoretical and practical arguments are given to show that the block circulant preconditioner can give fast preconditioned iterations for various classes of differential problems. Moreover, the P-circulants, a recently introduced circulant approximation for unsymmetric Toeplitz matrices, are shown to be more suitable sometimes than other circulant matrices for the underlying block preconditioner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Convergence Rate of Block Preconditioned Systems Arising from Lmf-based Ode Codes

The solution of ordinary and partial differential equations using implicit linear multistep formulas (LMF) is considered. More precisely, boundary value methods (BVMs), a class of methods based on implicit formulas will be taken into account in this paper. These methods require the solution of large and sparse linear systems M̂x = b. Block-circulant preconditioners have been proposed to solve th...

متن کامل

Preconditioned Linear Systems of Time-dependent Pdes. Properties and Performances

In this talk, we will survey some properties of the preconditioners introducedin [1,2] for the solution of the linear systems arising in time-dependent PDEs.Moreover, we will give theoretical results on the convergence rate of the under-lying preconditioned iterations using various Krylov subspace methods. Moreprecisely, if s is the size of the matrices related to the time-step ...

متن کامل

Accelerating CS in Parallel Imaging Reconstructions Using an Efficient and Effective Circulant Preconditioner

Purpose: Design of a preconditioner for fast and efficient parallel imaging and compressed sensing reconstructions. Theory: Parallel imaging and compressed sensing reconstructions become time consuming when the problem size or the number of coils is large, due to the large linear system of equations that has to be solved in l1 and l2-norm based reconstruction algorithms. Such linear systems can...

متن کامل

Generalized circulant Strang-type preconditioners

SUMMARY Strang's proposal to use a circulant preconditioner for linear systems of equations with a Hermitian positive definite Toeplitz matrix has given rise to considerable research on circulant preconditioners. This paper presents an {e iϕ }-circulant Strang-type preconditioner.

متن کامل

Block preconditioners with circulant blocks for general linear systems

Block preconditioner with circulant blocks (BPCB) has been used for solving linear systems with block Toeplitz structure since 1992 [R. Chan, X. Jin, A family of block preconditioners for block systems, SIAM J. Sci. Statist. Comput. (13) (1992) 1218–1235]. In this new paper, we use BPCBs to general linear systems (with no block structure usually). The BPCBs are constructed by partitioning a gen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2000